UWat-Emote at EmoInt-2017: Emotion Intensity Detection using Affect Clues, Sentiment Polarity and Word Embeddings
نویسندگان
چکیده
This paper describes the UWaterloo affect prediction system developed for EmoInt2017. We delve into our feature selection approach for affect intensity, affect presence, sentiment intensity and sentiment presence lexica alongside pretrained word embeddings, which are utilized to extract emotion intensity signals from tweets in an ensemble learning approach. The system employs emotion specific model training, and utilizes distinct models for each of the emotion corpora in isolation. Our system utilizes gradient boosted regression as the primary learning technique to predict the final emotion intensities.
منابع مشابه
NSEmo at EmoInt-2017: An Ensemble to Predict Emotion Intensity in Tweets
In this paper, we describe a method to predict emotion intensity in tweets. Our approach is an ensemble of three regression methods. The first method uses contentbased features (hashtags, emoticons, elongated words, etc.). The second method considers word n-grams and character ngrams for training. The final method uses lexicons, word embeddings, word ngrams, character n-grams for training the m...
متن کاملYZU-NLP at EmoInt-2017: Determining Emotion Intensity Using a Bi-directional LSTM-CNN Model
The EmoInt-2017 task aims to determine a continuous numerical value representing the intensity to which an emotion is expressed in a tweet. Compared to classification tasks that identify 1 among n emotions for a tweet, the present task can provide more fine-grained (real-valued) sentiment analysis. This paper presents a system that uses a bi-directional LSTM-CNN model to complete the competitio...
متن کاملGradAscent at EmoInt-2017: Character and Word Level Recurrent Neural Network Models for Tweet Emotion Intensity Detection
The WASSA 2017 EmoInt shared task has the goal to predict emotion intensity values of tweet messages. Given the text of a tweet and its emotion category (anger, joy, fear, and sadness), the participants were asked to build a system that assigns emotion intensity values. Emotion intensity estimation is a challenging problem given the short length of the tweets, the noisy structure of the text an...
متن کاملSeernet at EmoInt-2017: Tweet Emotion Intensity Estimator
The paper describes experiments on estimating emotion intensity in tweets using a generalized regressor system. The system combines lexical, syntactic and pretrained word embedding features, trains them on general regressors and finally combines the best performing models to create an ensemble. The proposed system stood 3rd out of 22 systems in the leaderboard of WASSA-2017 Shared Task on Emoti...
متن کاملIITP at EmoInt-2017: Measuring Intensity of Emotions using Sentence Embeddings and Optimized Features
This paper describes the system that we submitted as part of our participation in the shared task on Emotion Intensity (EmoInt-2017). We propose a Long short term memory (LSTM) based architecture cascaded with Support Vector Regressor (SVR) for intensity prediction. We also employ Particle Swarm Optimization (PSO) based feature selection algorithm for obtaining an optimized feature set for trai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017